Research INterest
My main research interests are nanoscale systems far away from equilibrium and in particular their driven dissipative dynamics. This includes an interest in open (quantum) systems, (quantum) nonlinear dynamics, topological phenomena and many-body physics.
In the past I have been investigating nonequilibrium pattern formation like laning and demixing in driven Brownian particles by means of large scale simulations and dynamical density functional theory. When a system is driven out of equilibrium, the formalism of stochastic thermodynamics provides powerful relations like the Jarzynski equality. Generalizing these so called fluctuation theorems to incorporate the measurement device and measurement errors, especially when performing feedback control, has been part of my reserach.
Furthermore, I explored the interplay of electron transport and mechanical degrees of freedom. In particular, the thermodynamic description of self-oscillation in nano electromechanical systems and their application as stochastic engines and rectifiers. Besides, quantum many-body physics has attracted my attention, especially quantum critical systems and the fate of quantum phase transitions in open system settings as experiments can never be completely isolated. Here, the laws of thermodynamics dictate the way to correctly account for the influence of the environment and leads to a consistent and rigorous framework. Other striking phenomenon of collective behavior in many-body systems that have attracted my attention are superradiance and delocalization.
Most recently, I have been interested in synchronization of quantum systems. Since the underlying description of the world is quantum, it is natural to ask how classical synchronization phenomena are modified when the degrees of freedom are quantum, and how the principles of synchronization can be stated in a way compatible with quantum mechanics. In particular, I seek to understand how to harness the power of topology known from condensed matter physics for synchronization of quantum systems.
Invited Talks
Self-oscillation, heat engines, synchronization and topology -- the electron shuttle revisited
FQST2020 - International Workshop for Young Researchers on the Future of Quantum Science and Technology
National Institute of Informatics, Feb. 03 - 06, 2020, Tokyo, Japan
Other Talks
Contributed talks in international meetings
Topological synchronization of classical and quantum systems
WE-Heraeus-Seminar: "Nonequilibrium Physics" -- Bad Honeff (2023)
Topological synchronization of classical and quantum systems
Workshop "Non-Hermitian Topology" -- PKS-MPG, Dresden (2023)
Topological synchronization of quantum van der Pol oscillators
APS March Meeting 2023 -- Las Vegas (2023)
Nanoelectromechanical rotary (engine &) current rectifier
APS March Meeting 2022 -- Chicago (2022)
Topological Synchronization of coupled van der Pol oscillators
Workshop "EAS - Extreme Atomic Systems" -- Kleinwalsertal (2022)
Self-oscillation, synchronization and topology – the electron shuttle revisited
Workshop "Atomic Summer Camp 2021" -- PKS-MPG, Dresden (2021)
Dissipative nonequilibrium synchronization of topological edge states via self-oscillation
German Physical Society Spring Meeting - virtual (2021)
Dissipative nonequilibrium synchronization of topological edge states via self-oscillation
APS March Meeting - virtual (2021)
Stochastic thermodynamics of self-oscillations: the electron shuttle
German Physical Society Spring Meeting - Regensburg (2019)
Stochastic thermodynamics based on incomplete information: Generalized Jarzynski equality with measurement errors with or without feedback
German Physical Society Spring Meeting - Dresden (2017)
talks in universities and research institutes
Topological synchronization of classical and quantum systems
Group of Prof. F. Marquardt & Dr. F Kunst -- Erlangen (2023)
Group of Prof. S. Rotter -- Wien (2023)
Group of Prof. A. Nunnenkamp -- Wien (2023)
Group of Prof. N. Schuch -- Wien (2023)
Group of Dr. U. Delić -- Wien (2023)
Group of Dr. R. Fazio -- Trieste (2023)
Group of Prof. A. Pikovsky & Prof. M. Rosenblum -- Potsdam (2023)
Group of Prof. O. Zilberberg -- Zürich & Konstanz (2023)
Group of Prof. C. Bruder -- Basel (2023)
Group of Prof. A. Buchleitner -- Basel (2023)
Synchronizing quantum systems - CIQC Spark Talk
NSF Challenge Institute for Quantum Computation - Berkeley (2023)
Topological synchronization of quantum van der Pol oscillators
Group of Prof. E. Knobloch - Berkeley (2022)
Topological synchronization of quantum van der Pol oscillators
Joint Group Seminar of Prof. A. Sipahigil & Prof. M. C. Wu - Berkeley (2022)
Topological synchronization of quantum van der Pol oscillators
Group of Prof. R. Blick at Universität Hamburg - Hamburg (2022)
Thermodynamics, synchronization and topology: Various aspects of electron shuttling
Emergent Phenomena/QM Seminar, Condensed Matter Theory Center - Berkeley (2022)
Self-oscillation, synchronization, topology and thermodynamics -- electron shuttle revisited
Group of Prof. R. Blick at Universität Hamburg - Hamburg (2021)
Self-oscillation, synchronization, topology and thermodynamics -- the electron shuttle
Group of Prof. L. C. Kwek at National University of Singapore - Singapore (2020)
Self-oscillation, heat engines, synchronization and topology - the electron shuttle revisited
Quantum Science Theory Seminar at Université de Genève - Geneva (2020)
Stochastic thermodynamics of self-oscillations: the electron shuttle
Theoretical Quantum Center Workshop at NTT Basic Research Laboratories - Atsugi (2019)
Stochastic thermodynamics of self-oscillations: the electron shuttle
Dahlem Center for Complex Quantum Systems Theory Seminar at Freie Universität Berlin - Berlin (2019)
Other Talks
Wenn Elektronen den Bus nehmen - das Elektron-Shuttle
Dresdner Lange Nacht der Wissenschaften - virtual (2021)
Thermodynamics of self-oscillation at the example of the electron shuttle
Research Training Group 1558 Workshop - Berlin (2018)
Electron shuttle as a model system exhibiting self-oscillations
Research Training Group 1558 Workshop - Templin (2017)
Collaborators
Prof. Tobias Brandes
Technische Universität Berlin - Germany
Prof. Christopher Jarzynski
University of Maryland - USA
Prof. Sabine H. L. Klapp
Technische Universität Berlin - Germany
Prof. Joel E. Moore
University of California, Berkeley - USA
Prof. Kae Nemoto
Okinawa Institute of Science and Technology - Japan
Prof. Gloria Platero
Instituto de Ciencia de Materiales de Madrid, CSIC - Spain
Prof. Jan Michael Rost
Max-Planck-Institut für Physik komplexer Systeme - Germany
Dr. Victor M. Bastidas
NTT Basic Research Laboratory - Japan
Dr. Javier Cerrillo
Universidad Politécnica de Cartagena - Spain
Dr. Alexander Croy
Technische Universität Dresden - Germany
Dr. Josephine Dias
Okinawa Institute of Science and Technology - Japan
Dr. Matthew T. Eiles
Max-Planck-Institut für Physik komplexer Systeme - Germany
Dr. Alexander Eisfeld
Max-Planck-Institut für Physik komplexer Systeme - Germany
Dr. Florian Kogler
Technische Universität Berlin - Germany
Dr. William J. Munro
NTT Basic Research Laboratory - Japan
Dr. Gernot Schaller
Helmholtz-Zentrum Dresden - Germany
Dr. Philipp Strasberg
Universitat Autònoma de Barcelona - Spain
Ghassan Abumwis
Max-Planck-Institut für Physik komplexer Systeme - Germany
Juan Moreno
Max-Planck-Institut für Physik komplexer Systeme - Germany